今天来更新一部分,各位看客大爷久等了!
开始正题!
这次更新我们将会对涡轮盘和盖板还有喷嘴环做一个小小的讲解。
按照惯例,先放成品图!
下图的自由曲面叶形看起来非常直观。
涡轮叶片使用“自由曲面”造型,自由曲面是工程中复杂而又经常遇到的曲面,如飞机机翼和汽车外形曲面等均为自由曲面。
下图是涡轮的叶片各部分截面形状,这也是自由曲面的典型应用。
蓝色线条表示叶根
绿色线条表示叶中
红色线条表示叶顶
从机械制造的角度来说,这种自由曲面的叶片加工起来比直纹曲面难多了,为什么还要使用这种曲面的叶片设计呢?
效率!
那为什么扭转叶片可以提高效率呢?
这要涉及到“理想等环量流型”的问题,目的是要达到:喷嘴出口的环量沿叶高相等,各流层之间的环量差等于零。避免气体径向流动产生的附加损失,避免撞击损失。以提高效率。
以上说法不是很好理解。其实很简单的原因,试想一下,如果是直叶片,由于叶片各部分半径的不同,径向距离上每一点的线速度都不同,而他们获得的是相同流速的驱动气流,假如:我们设置50%叶高的叶片部位受到气流驱动后速度是S,扭矩为N。由于杠杆原理可知,那么在叶根处叶片获得的转速会大于X,获得的扭矩会小于N,叶片叶尖部位获得的转速会小于X,获得扭矩会大于N。相互牵制能量就消耗在叶片上了。
所以将叶片扭动一定角度,再加厚叶根部位,在特定气流速度下,让叶片各部分都获得基本相同的转速,就得到了我们现在所设计的变化的叶盆曲线。
再举一个例子:
两种不同缠距的螺杆,匹配相应螺纹的螺母后,同在5秒的时长下,用力推动螺母行走相同的距离,粗缠距与细缠距螺母的转速会是怎么样的?
粗缠距
细缠距
别想了,这个是推不动的!(捂嘴偷笑)如果真能推动的话,相同时间,行程相同的情况下,细缠距的螺母要转得快一些。
下面这个才推得动。(吡牙)不过原理是一样的。
开始正题!
这次更新我们将会对涡轮盘和盖板还有喷嘴环做一个小小的讲解。
按照惯例,先放成品图!
下图的自由曲面叶形看起来非常直观。
涡轮叶片使用“自由曲面”造型,自由曲面是工程中复杂而又经常遇到的曲面,如飞机机翼和汽车外形曲面等均为自由曲面。
下图是涡轮的叶片各部分截面形状,这也是自由曲面的典型应用。
蓝色线条表示叶根
绿色线条表示叶中
红色线条表示叶顶
从机械制造的角度来说,这种自由曲面的叶片加工起来比直纹曲面难多了,为什么还要使用这种曲面的叶片设计呢?
效率!
那为什么扭转叶片可以提高效率呢?
这要涉及到“理想等环量流型”的问题,目的是要达到:喷嘴出口的环量沿叶高相等,各流层之间的环量差等于零。避免气体径向流动产生的附加损失,避免撞击损失。以提高效率。
以上说法不是很好理解。其实很简单的原因,试想一下,如果是直叶片,由于叶片各部分半径的不同,径向距离上每一点的线速度都不同,而他们获得的是相同流速的驱动气流,假如:我们设置50%叶高的叶片部位受到气流驱动后速度是S,扭矩为N。由于杠杆原理可知,那么在叶根处叶片获得的转速会大于X,获得的扭矩会小于N,叶片叶尖部位获得的转速会小于X,获得扭矩会大于N。相互牵制能量就消耗在叶片上了。
所以将叶片扭动一定角度,再加厚叶根部位,在特定气流速度下,让叶片各部分都获得基本相同的转速,就得到了我们现在所设计的变化的叶盆曲线。
再举一个例子:
两种不同缠距的螺杆,匹配相应螺纹的螺母后,同在5秒的时长下,用力推动螺母行走相同的距离,粗缠距与细缠距螺母的转速会是怎么样的?
粗缠距
细缠距
别想了,这个是推不动的!(捂嘴偷笑)如果真能推动的话,相同时间,行程相同的情况下,细缠距的螺母要转得快一些。
下面这个才推得动。(吡牙)不过原理是一样的。