在生物医学领域中的应用
①临床血细胞分析 近来Ayliffe等人研制出了第一台阻抗计数、光谱分类的细胞芯片分析仪。他们将微流路和微电极组合到芯片上,实现了细胞的分类和计数。尔后许多研究者对此进行了改进,使这一技术日趋完美,不仅可以进行细胞的分类和计数而且还实现了血红蛋白的定量测定。值得一提的是Gaward等研制了一种50px×75px大小的细胞分析芯片。他们利用阻抗法和光学分析技术实现了细胞的分析和颗粒大小的测定。近来美国华盛顿大学与美国Backman公司合作研究出了可供检测血细胞的一次性塑料芯片,大大减少了检测成本和仪器的体积。
②核酸分析 微流控芯片实验室一开始就在DNA领域显示其极强的功能,涉及到了遗传学诊断,法医学基因分型和测序等方面内容。Tezuka等在芯片上构建一种整体集成的纳米柱型阵列结构,这种纳米柱直径200~500nm,高5mm,类似于排列在一起的多个梳子,用于研究DNA的电泳特征及其分离,已分离了T4 DNA和165.5kbp的lambda标样;Lee等制成集成有微混合器和DNA纯化装置的一次性微流控芯片系统,用于DNA的样品制备,在微通道里放置阴离子交换树脂,得到了单一头发丝中的线粒体DNA的电泳图;Hofgärtner等利用微流控芯片快速分析脑脊液样品中的DNA,诊断带状疱疹病毒性脑炎所需时间只有脑脊液样品普通凝胶电泳的百分之一;本文作者最近用自研的微流控芯片系统分析了肿瘤细胞基因甲基化测定的PCR样品,与普通凝胶电泳相比其检测灵敏度提高了1024倍,其分析时间缩短了100倍以上。
③蛋白质分析 Duffy等利用CD盘式塑料阵列芯片采用离心的方式进行了碱性磷酸酶分析,每个样品检测只需3ml试剂,几分钟内可分析几十个样品。瑞典的GYROS公司已生产出类似的产品并进行了肌球蛋白、IgG、IgA分析。近来Burke和Regnier在芯片上利用电泳辅助微分析系统(Electrophoretically mediated microanalysis,EMMA)进行了β-半乳糖苷酶的分析测定。以Ramsey实验小组为代表的很多研究者利用芯片进行了蛋白质和肽的二维电泳分离与检测,为蛋白质的组学研究提供了一种快捷、便利的分析工具。
④药物分析 Hatch等利用“快速扩散免疫分析”方法在芯片上进行了全血Phenyton(一种抗癲痫药)浓度测定,测定时无需去红细胞,检测时间不足20秒。Chiem等人利用竞争免疫分析法检测血清样品中的治疗哮喘用的药物茶碱的浓度,办法是将含有未标记的药物样品和已知数量的荧光标记的药物及药物抗体混合,未标记的药物与标记的药物竞争,导致标记的药物与抗体复合物的峰信号降低,而单个的标记药物峰信号增加,以LIF为检测器,在稀释的血清中药物检测限为1.25mg/L,分离时间不超过50秒。Sathuluri等人利用细胞芯片进行抗肿瘤药物的高通量筛选。在芯片实验室上进行手性药物分离及药物相互作用研究等方面的文献报道较多。
⑤小分子分析 Argaint等研制了一种含有PO2、PCO2和pH传感器的硅芯片用于血气分析。整个芯片的尺寸仅有6mm×22mm大小。用聚丙烯酰胺和聚硅氯烷聚合层分别作为内部电解质腔和气体渗透膜。用集成电路的制作工艺将整个传感器件集成在硅片上。因流路通道也被直接集成在硅芯片上,所以减少了样品和试剂的用量,且分析精度又能满足临床检测的需要。这种产品适宜批量生产。
Koutny等利用免疫芯片电泳不需要进行预浓缩,即可在临床感兴趣的范围(10~600mg/L)内对血清皮质醇进行芯片电泳免疫分析。Rodriguez等利用同步循环模式,通过CZE和MEKC两种方式分离人尿中的苯丙胺,甲基苯丙胺,3,4-亚甲基二氧甲基苯丙胺及b-苯基乙胺的衍生产物,检测限为10mg/L,远高于目前实际应用的要求。
当然,其应用不仅仅局限在生物医学领域,在化学有机合成和分析化学等方面亦得到时了广泛的应用,在此不再细述。
芯片实验室发展趋势
芯片实验室由于它的发展涉及很多学科,又由于研究者的专长和兴趣不同,研究的侧重点不同,因此重现出发展的多样性,总的发展朝着更加完善的方向发展。
1.芯片制造由手工为主的微机电(MEMS)技术生产逐渐朝自动化、数控化的亚紫外激光直接刻蚀微通道方向发展。
2.将泵、阀、管道、反应器等集于一体,呈高度集成化。最具代表性的工作是美国Quake研究小组将三千多个微阀、一千个微反应器和一千多条微通道集成在尺寸仅有几十个平方毫米面积的硅质材料上,完成了液体在内部的定向流动与分配。
3.用于芯片实验室制造的材料呈现出多样式,朝着越来越便宜的方向发展。由最初的价格昂贵的玻璃和硅片为材料,发展成为以便宜的聚合物材料,如聚二甲基硅烷(PDMS)、聚甲基异丁烯酸(PMMA)和聚碳酸酯(PC)等。因而,为将来的一次性使用提供了基础。
4.由于不同样品分离检测的需要,分离通道表面的改性呈现出多样性发展。用磺化、硝化、胺化及把带双官能团的化合物耦合到表面的胺基上的办法加以修饰可获得各种分子组分的表面;用EDA、PDA、CAB、SPH及有机硅烷和无机氧化物等加以修饰微通道表面,以改善吸附特性,改变疏水性和控制电动力学效应以提高分离效率。
5.芯片实验室的驱动源从以电渗流发展到流体动力、气压、重力、离心力、剪切力等多种手段。一种利用离心力的芯片已经商品化,被称为Lab-on-a-CD,因为该芯片形状象一个小CD盘。
6. 芯片实验室的检测技术朝着多元化发展。目前最常用的检测器是荧光和电化学检测器。随着固态电子器件的发展,一些传统的检测方法也进入这一领域,如采用半导体微波源的MIPAES检测、不需标记的SPR检测、快速阻抗谱(FIS)检测、NIR时间分辨荧光检测。
7.应用方向:芯片实验室已从主要应用的生命科学领域扩展到其它领域。例如用于DNA、RNA、蛋白质等方向分析检测,还用于化学和生物试剂、环境污染的监测;监控微秒级的化学和生物化学反应动力学;用于许多化学合成反应的研究,药物和化学合成与筛选等。因此,芯片实验室不仅为分析化学家,也为合成化学家特别是药物合成化学家打开了通往无限美好明天的大门。
8.芯片实验室产业化发展越来越明显、越快速。由于它的基础研究和技术研究越来越专和精,使整体技术发展速度加快,再加之它朝着检测功能化方面发展,其应用前景越来越广。因此,产业化前景看好,有可能成为新的经济增长点。
免责声明:文章来源汶颢http://www.whchip.com以传播知识、有益学习和研究为宗旨。转载仅供参考学习及传递有用信息,版权归原作者所有,如侵犯权益,请联系删除。
①临床血细胞分析 近来Ayliffe等人研制出了第一台阻抗计数、光谱分类的细胞芯片分析仪。他们将微流路和微电极组合到芯片上,实现了细胞的分类和计数。尔后许多研究者对此进行了改进,使这一技术日趋完美,不仅可以进行细胞的分类和计数而且还实现了血红蛋白的定量测定。值得一提的是Gaward等研制了一种50px×75px大小的细胞分析芯片。他们利用阻抗法和光学分析技术实现了细胞的分析和颗粒大小的测定。近来美国华盛顿大学与美国Backman公司合作研究出了可供检测血细胞的一次性塑料芯片,大大减少了检测成本和仪器的体积。
②核酸分析 微流控芯片实验室一开始就在DNA领域显示其极强的功能,涉及到了遗传学诊断,法医学基因分型和测序等方面内容。Tezuka等在芯片上构建一种整体集成的纳米柱型阵列结构,这种纳米柱直径200~500nm,高5mm,类似于排列在一起的多个梳子,用于研究DNA的电泳特征及其分离,已分离了T4 DNA和165.5kbp的lambda标样;Lee等制成集成有微混合器和DNA纯化装置的一次性微流控芯片系统,用于DNA的样品制备,在微通道里放置阴离子交换树脂,得到了单一头发丝中的线粒体DNA的电泳图;Hofgärtner等利用微流控芯片快速分析脑脊液样品中的DNA,诊断带状疱疹病毒性脑炎所需时间只有脑脊液样品普通凝胶电泳的百分之一;本文作者最近用自研的微流控芯片系统分析了肿瘤细胞基因甲基化测定的PCR样品,与普通凝胶电泳相比其检测灵敏度提高了1024倍,其分析时间缩短了100倍以上。
③蛋白质分析 Duffy等利用CD盘式塑料阵列芯片采用离心的方式进行了碱性磷酸酶分析,每个样品检测只需3ml试剂,几分钟内可分析几十个样品。瑞典的GYROS公司已生产出类似的产品并进行了肌球蛋白、IgG、IgA分析。近来Burke和Regnier在芯片上利用电泳辅助微分析系统(Electrophoretically mediated microanalysis,EMMA)进行了β-半乳糖苷酶的分析测定。以Ramsey实验小组为代表的很多研究者利用芯片进行了蛋白质和肽的二维电泳分离与检测,为蛋白质的组学研究提供了一种快捷、便利的分析工具。
④药物分析 Hatch等利用“快速扩散免疫分析”方法在芯片上进行了全血Phenyton(一种抗癲痫药)浓度测定,测定时无需去红细胞,检测时间不足20秒。Chiem等人利用竞争免疫分析法检测血清样品中的治疗哮喘用的药物茶碱的浓度,办法是将含有未标记的药物样品和已知数量的荧光标记的药物及药物抗体混合,未标记的药物与标记的药物竞争,导致标记的药物与抗体复合物的峰信号降低,而单个的标记药物峰信号增加,以LIF为检测器,在稀释的血清中药物检测限为1.25mg/L,分离时间不超过50秒。Sathuluri等人利用细胞芯片进行抗肿瘤药物的高通量筛选。在芯片实验室上进行手性药物分离及药物相互作用研究等方面的文献报道较多。
⑤小分子分析 Argaint等研制了一种含有PO2、PCO2和pH传感器的硅芯片用于血气分析。整个芯片的尺寸仅有6mm×22mm大小。用聚丙烯酰胺和聚硅氯烷聚合层分别作为内部电解质腔和气体渗透膜。用集成电路的制作工艺将整个传感器件集成在硅片上。因流路通道也被直接集成在硅芯片上,所以减少了样品和试剂的用量,且分析精度又能满足临床检测的需要。这种产品适宜批量生产。
Koutny等利用免疫芯片电泳不需要进行预浓缩,即可在临床感兴趣的范围(10~600mg/L)内对血清皮质醇进行芯片电泳免疫分析。Rodriguez等利用同步循环模式,通过CZE和MEKC两种方式分离人尿中的苯丙胺,甲基苯丙胺,3,4-亚甲基二氧甲基苯丙胺及b-苯基乙胺的衍生产物,检测限为10mg/L,远高于目前实际应用的要求。
当然,其应用不仅仅局限在生物医学领域,在化学有机合成和分析化学等方面亦得到时了广泛的应用,在此不再细述。
芯片实验室发展趋势
芯片实验室由于它的发展涉及很多学科,又由于研究者的专长和兴趣不同,研究的侧重点不同,因此重现出发展的多样性,总的发展朝着更加完善的方向发展。
1.芯片制造由手工为主的微机电(MEMS)技术生产逐渐朝自动化、数控化的亚紫外激光直接刻蚀微通道方向发展。
2.将泵、阀、管道、反应器等集于一体,呈高度集成化。最具代表性的工作是美国Quake研究小组将三千多个微阀、一千个微反应器和一千多条微通道集成在尺寸仅有几十个平方毫米面积的硅质材料上,完成了液体在内部的定向流动与分配。
3.用于芯片实验室制造的材料呈现出多样式,朝着越来越便宜的方向发展。由最初的价格昂贵的玻璃和硅片为材料,发展成为以便宜的聚合物材料,如聚二甲基硅烷(PDMS)、聚甲基异丁烯酸(PMMA)和聚碳酸酯(PC)等。因而,为将来的一次性使用提供了基础。
4.由于不同样品分离检测的需要,分离通道表面的改性呈现出多样性发展。用磺化、硝化、胺化及把带双官能团的化合物耦合到表面的胺基上的办法加以修饰可获得各种分子组分的表面;用EDA、PDA、CAB、SPH及有机硅烷和无机氧化物等加以修饰微通道表面,以改善吸附特性,改变疏水性和控制电动力学效应以提高分离效率。
5.芯片实验室的驱动源从以电渗流发展到流体动力、气压、重力、离心力、剪切力等多种手段。一种利用离心力的芯片已经商品化,被称为Lab-on-a-CD,因为该芯片形状象一个小CD盘。
6. 芯片实验室的检测技术朝着多元化发展。目前最常用的检测器是荧光和电化学检测器。随着固态电子器件的发展,一些传统的检测方法也进入这一领域,如采用半导体微波源的MIPAES检测、不需标记的SPR检测、快速阻抗谱(FIS)检测、NIR时间分辨荧光检测。
7.应用方向:芯片实验室已从主要应用的生命科学领域扩展到其它领域。例如用于DNA、RNA、蛋白质等方向分析检测,还用于化学和生物试剂、环境污染的监测;监控微秒级的化学和生物化学反应动力学;用于许多化学合成反应的研究,药物和化学合成与筛选等。因此,芯片实验室不仅为分析化学家,也为合成化学家特别是药物合成化学家打开了通往无限美好明天的大门。
8.芯片实验室产业化发展越来越明显、越快速。由于它的基础研究和技术研究越来越专和精,使整体技术发展速度加快,再加之它朝着检测功能化方面发展,其应用前景越来越广。因此,产业化前景看好,有可能成为新的经济增长点。
免责声明:文章来源汶颢http://www.whchip.com以传播知识、有益学习和研究为宗旨。转载仅供参考学习及传递有用信息,版权归原作者所有,如侵犯权益,请联系删除。