新贴游吧 关注:123贴子:4,141

【科普】太空航行与作战技术导论

取消只看楼主收藏回复

作者:Sanjysan 搬运:落日三桅帆
目录-
第一章:太空航行导论
————————————
————————————
第一节 太空航行器推进技术
第二节 第一种推进形式之火箭推进系统
第三节 第一种推进形式之各式火箭推进系统
第四节 第二种推进形式:星际冲压喷射推进系统
第五节 第三种推进形式:光压推进系统与磁压推进系统
第六节 三种推进形式系统的比较
第七节 太空航行原理与一些初步概念
——————————————————————————
——————————————————————————
第二章:太空作战导论
————————————
————————————
第一章 背景环境篇
第二章 武器系统篇
第三章 侦测、反侦测与通讯篇
第四章 太空军舰的设计与制造
——————————————————————————
——————————————————————————
科普贴勿插楼!!!



来自Android客户端1楼2014-09-25 19:30回复
    第一节 太空航行器推进技术
      任何离开地表进入太空,以及在太空航行的人造飞行体,其最根本的就是它的推进系统。没有它统其它的一切都不用提了,因此推进系统就是太空船的心脏。不同的太空船推进系统将会直接影响太空航行的型态。而所有推进系统的原理都是植基于物理学上动量守恒定律,简单来说就是出于以下几个原因:
      一、所有推进系统都是使用根据牛顿第三运动定律的反作用力效果来使航行器前进。在地球上,主要是以外界的物质来作为获得反作用力的对象。比如陆地上用脚,或用轮子的摩擦力来产生反作用力,水面船舰用种种方法拨动海水以来获得反作用力使船舰前进,飞机则是以螺旋桨或喷射引擎等拨动空气来获得反作用力。就太空船而言则是由喷射气体或是由外界提供动能来获得反作用力而能前进。
      二、在太空环境中的阻力为零。根据牛顿第一运动定律,任何速度不为零的物体必基于惯性而等速前进。因此在理论上任何太空航行器的航程均为无限大,这点由历年来发射的外太阳系行星探测船可以得知。航海家号以及先锋号都已经离开太阳系了,这些无人探测船都会以数十亿年的时间来向距离挑战。而载人的太空航行器受限于携带的空气,水与食物数量以及人类的寿命长度而导致巡航时间受到限制,因而会出现存在某个行动半径限制的续航力有限的情形。而在这种情况下,能在相同的时间内增大行动半径的唯一选择就只有增加巡航速度这个方法。
      三、同样是由于太空中没有阻力这个原因,当我们想要减慢或停止太空船的运动的时候,必须要消耗携带的燃料来抵销原本的前进速度。这是导致太空航行器与地球圈内的航行器的运动形式差异的最重要的原因。地球上的航行器由于具有大气与水的阻力因素,因而只要把推进系统关闭,航行器速度自然会降为零。因此在大气圈内,燃料的消耗主要是用来对抗阻力以维持速度,同时其阻力亦限制了可以达到的速度上限。但在太空中没有阻力,或者严格来说,阻力趋近于零。因此关闭推进系统不会减低航行器速度,想要停止唯有消耗燃料作反向喷射,这造成了较大气圈内行行更大的燃料消耗量。另外必须注意的是这种情形也适用于太空船的姿态修正与小规模的轨道修正时的小规模运动中。
      虽然原理相同,但是应用的方法则有一些差别。想以反作用力前进基本上有三个方法,推进系统也因此三种方法的差别因而可以分成三种形式。第一种推进形式是将自己的一部份质量往后抛掷,如此自然可以使剩下来的部分获得反作用力而前进。这种形式一


    来自Android客户端2楼2014-09-25 19:31
    收起回复
      般被称为火箭式推进系统,最有名的例子就是登月用的巨大火箭农神五号。
        第二种推进形式则是拨动加速外界的流质藉此获得反作用力,简单的例子就是各式飞机与船舰,这些都是拨动空气与海水等流质前进。基本上这类推进系统有很多次形式,但能在其够使用于太空中的只有一种,就是冲压推进系统。
        第三种推进形式则是纯粹以外界动力来推动,本身既不携带可以抛掷的质量,也不特别去拨动外界流质。而这种方法是最早被人类应用的系统,简单的例子就是帆船。
        一般而言,评论各种推进系统优劣的主要标准是其能量利用效率,推进系统形式的不同将会对能量运用效率产生重大影响。另外即使是相同形式的推进系统,也会由于其所运用技术细节的不同而使能量利用效率出现巨大的差异,比如说使用核能或是化学能两者能量运用效率就有相当大的差别。最后的一种评估方法,则是各种进系统使用的燃料的能量价格。即使是能量利用效率较差,但如果价格较低甚至是免费的时候,无疑的会使其在经济上具有大的竞争能力。以下将简单的就三种基本形式的推进系统,及其使用技术不同而衍生的各式子系统的性能作一简单的介绍与评估。


      来自Android客户端3楼2014-09-25 19:32
      收起回复
        节操线>————————————<节操线


        来自Android客户端6楼2014-09-25 20:35
        收起回复
          质量同样需要在最初加速时增加额外燃料来运送的缘故。
            另外,又因为火箭速度变化量ΔV和其喷气速度Vc成线性关系,因此若质量比不变,则只要把Vc加倍,速度变化量也会加倍,因此也就可以达成减速的要求了。由上面的关系很明显的可以看出增加喷气速度的效率远优于增加燃料携带量的效率,因此增加太空船速度的方式以增加喷气速度为主。喷气速度提高则代表太空船效率有飞跃性的进展。
            但需要注意的是在讨论推进系统喷气速度之前,仍有一个重点必须加以考虑。也就是与一般的直觉上的看法完全不同的,喷气速度并非完全是越快越好。前面说过,推进系统的优劣评断主要在于其能量利用效率 (亦即燃料的利用效率) 。若不考虑其它因素而不断的增加喷气速度,则将会使燃料的利用效率降低,同时亦将导致飞行器所能达到的最大速度降低。当然有时候在极短时间内需要速度上的要求而不得不暂时牺牲效率,但这种牺牲是有一个界限的。
            理论上每种燃料皆有一个最佳喷气速度值。这个最佳值乃是以该燃料的能量转换率来计算。举例来说,目前核分裂约有0.07% 的能量转换率,亦即一公斤的核燃料经过分裂,其中会有 0.7公克的质量转换成能量释放出来。因此其最理想的燃料使用方式便是将其携带燃料质量之 0.07%转换成能量,用以将其余的99.93%的质量喷射出去获得推力。如此可达到的喷气速度便是以核分裂为动力的火箭之理想喷气速度,具有最高的能量利用效率,过高过低都是浪费燃料。
            如果以此核燃料为例,由于所能提取的能量由于能量转换率的限制被固定为 0.07%,因此想超过这个理想喷气速度只能减少喷射出去的推进剂质量,其结果可以经由简单的动能公式k=1/2*mv^2看出来。比如说若欲将喷气速度加倍,由于总能量 k不会改变,因而喷射出去的质量将只剩原来的四分之一,其余四分之三则必须以零速排出。而反作用力使太空船获得的速度的公式则是 MV=mv(国中的物理公式,还记得吗?)。因此很明显的,排气速度虽然加倍,但由于质量成为四分之一,故相乘起来获得的速度剩原先的二分之一而已。
            由以上的例子可以看出,高于理想排速度就会浪费燃料质量,低于理想排气速度则会浪费能量。两者都会减低燃料运用效率。但须注意的是这是具有100%热转换效率的「理想火箭系统」,实际上由于工程上的限制,能量利用效率通常会低于此理想值。而推进系统工程师的工作便是使喷气值尽量近理想值了。附带一题,能


          来自Android客户端8楼2014-09-25 20:37
          回复
            够得到的最高喷气速度的是由能量转换效率100%的物质-反物质对消灭效应的火箭系统,其喷气速度是光速。由于理论上没有任何东西可以超过光速。因此根据前述公式,理论上最佳的火箭系统即为使用正反物质对消灭效应的光子火箭,其理论比冲极限为光速除以地表重力常数9.8m/s,约为三千万秒左右。
              另外,重要性仅次于燃料能量运用效率的则是推力。燃料利用效率高的系统不一定代表推力也会高。举例来说,汽车的加速能力和每加仑汽油能跑的距离没有直接关系。燃料能量转换效率影响太空船可达的极速,推力则影响太空船的加速度,推力越大的太空船可以在越短的时间内达到其极速。
              基本上在民用太空船上,由于经济因素考量,推力的重要性并不高,但在军事用途的太空船上,加速度会影响太空船的反应速度。因此有相当的重要性。推力的另外一个重要性则是轨道投送时的影响。想要将太空船由星球表面推送至轨道上则推力必须够大,总推力必须大于重量方能将太空船推上轨道。另外越快将太空船推上轨道,受到星球重力的影响时间越短,损失的能量就越少。因此具有自星球表面起飞能力的太空船必须拥有巨大的推力才行。
              现在来讨论火箭推进系统中各种子形式的优劣和运用范围。基本上各式系统可以其燃料种类来分类,再以推进方式来作进一步细分。目前已知的燃料种类基本上可分三种,即为化学能,包含核分裂与核融合的核能,以及以反物质与物质对消灭产生能量的反物质燃料。就推进方式而言,则第一种推进形式的火箭推进系统可依应用技术的不同分为热推进系统与电磁推进系统,加上第二种推进形式冲压推进系统与第三种推进型式的光压与磁压推进系统。
              所谓的热推进系统,即为以燃料产生热量来加热工作流质,使其以高速喷出以获得反作用力的系统。这是目前最常见的系统,这类系统的特性是拥有相当大的推力,但缺点是其燃料效率会受限。这是因为工作流质的喷射速度与燃烧室内的温度和压力成正比,但温度和压力并不是可以无限增高的。燃烧室的温度承受能力会受到材料因素的限制,另外还必须考虑热转换时的损失,通常无法达到理论上的最佳喷射速度。
              电磁推进系统则是将燃料转换成电力输出,以此电力驱动线性马达,用以发射带电粒子如电子,离子与电浆等来获得反作用力。这类系统由于没有温度的限制,可用十分逼近理想喷气速度的高速度来喷射其工作流质,因而燃料的能量转换效率十分高。缺点是由于作为推进工作流质的电子与电浆质量太小,因而其


            来自Android客户端9楼2014-09-25 20:38
            回复
              推力十分低。通常需要以极长的时间来加速方能达到极速。且由于推力过低,无法用于星球表面的抗重力上升的需求。
                冲压推进系统则可算是热推进系统的一种,但由于其特性将其独立出来自成一类。此种系统乃是吸入星际物质用以做为燃料与推进剂工作流质,优点是可以加到极高的速度,缺点是无法减速煞车。
                最后是光压与磁力压推进,这是采用外部能量来源作为推进系统,本身并不携带或仅携带极少燃料,因而可规避上面的火箭速度公式限制,用很低的能量消耗达到很高的速度。缺点是推力相当低,加速时间长且航道固定。
                以上的系统并非是互斥的存在,基于其特性,具有同时存在甚至是混和使用的可能性。为求易于了解,这里设定一艘标准太空船来作为不同推进系统效能的比较参考。其基本资料设定为:
                太空船本体质量 100000t
                携带燃料质量 10000t
                太空船全重 110000t
                质量比(M+P)/M 1.1
                以这个标准平台来作为不同推进系统比较的比较平台。也就是说,我们以这一艘太空船与如此的燃料携带量作为参考基准,更换使用不同的推进系统,视其速度状态的变化来评估各种推进系统的特性。所要比较的各式推进系统将在下一节叙述。


              来自Android客户端10楼2014-09-25 20:39
              回复
                节操线>————————————<节操线


                来自Android客户端13楼2014-09-26 16:29
                回复
                  第三节 第一种推进形式之各式火箭推进系统
                    1.化学火箭推进系统
                    这是目前普遍使用的推进系统,算是十分原始的推进系统。其以化学物质间的化学反应来提供主要动力。以目前的技术,化学火箭的比冲在 200秒到480秒之间,喷气速度Vc大约在3~5km/s左右。化学推进系统除了化学能的能量转换效率之外,还有工程学上的热度与燃烧室压力限制等问题存在。即使未来的化学推进剂的改良达到巅峰,其Vc也不太可能超过10km/s的水平,因此其前景有限。若装备Vc约为 5km/s之化学火箭推进系统,则标准太空船所获得的ΔV为477m/s。
                    化学火箭的优点是和其它火箭相比,引擎重量非常轻(较重的部份是燃料的重量),并有极高的推力,可推送大量载荷抗重力上升。缺点就是这个 477m/s的ΔV与其它形式的火箭比起来实在太小了。化学火箭理想喷气值约为 5000m/s左右,目前的化学火箭工艺技术至少在喷气速度方面已经达到极限,进一步的发展主要是在系统减重,减少价格与寻找更有效率的新燃料方面。不过如前所述,所能增加的效果也是极为有限的。I


                  来自Android客户端14楼2014-09-26 16:32
                  回复
                      2.核分裂式推进系统之一,核分裂热推进引擎
                      这是以核分裂作动力源的推进系统。其燃料主要是铀235或是钸239。就能量利用方式的不同可以分几个支系。以火箭系统的支系而言,是以核分裂燃料产生热,加热燃烧室中的工作流质(即推进剂)使其喷出。通常采用分子量最低的氢作为获得反作用力的工作流质以求得最高的喷气速度。美国在六零年代曾经进行过一项称之为「核子引擎火箭推进系统应用」的研究计画,(Nuclear Engine for Rocket Vehicle Applications,NERVA)测试过这类核子火箭的可能性。
                      NERVA没有实际升空测试,而是把引擎放在地上,喷气口朝天喷射的大规模引擎测试计画。这个计画中建造了十数部引擎,密集测试了数十次。其中测试机组中的最高出力约为1130MW,比冲约为 850秒,推力从一万磅到二十五万磅的都有。最高记录曾以全功率连续运转28分钟。而且这些只是以60年代的技术作出来的测试用引擎,便有90年代最先进化学火箭两倍以上的比冲量。以这个测试用引擎的能力,约可使标准太空船达到 794m/sec的ΔV。而此种引擎的理论理论比冲值约在750秒到1200秒之间。
                      NERVA 研究计画后来在80年代美国政府删减火星登陆计画预算时中止,所有设备皆被弃置,但宝贵的测试资料与经验都留下来了。如果需要的话,这种引擎是能在最短时间发展出来的优秀次代火箭引擎。和尚未成功的受控核融合火箭相比,这种核分裂火箭用的是已经成熟,相当实际的技术,只要投下经费,十年内便可建造出可靠的引擎装到太空船上。
                      另外一方面,即使NERVA 计画结束,大量理论方面的基础研究并未跟著停止。就核分裂热推进系统而言,理论上具有另一种较为优秀的引擎存在,即气态核心反应炉。这是相对于NERVA 计画中使用的固态(石墨)核心反应炉而言,以铀电浆与氢混和的气态炉心反应炉。其比冲潜力在5000秒~10000秒之间。这类引擎的困难与受控核融合炉有点类似,皆为炉心高温气体的处理相当麻烦。不过由于其并非欲进行核融合,气体温度仅约摄氏数万度,远较融合炉的数千万到上亿度为低,因而难度低了许多。若取理论平均值7000秒比冲来计算,则使用这类系统的标准太空船之ΔV可达到6538m/sec。但这类系统,包含固态炉心的 NERVA计画都有个相似的缺点,即其排气具有放射性,因此不能在地球上使用。在太空


                    来自Android客户端15楼2014-09-26 16:33
                    回复
                      中则无妨,因放射性气体会很快扩散开来。核分裂系统的理想喷气值约为11200km/s。


                      来自Android客户端16楼2014-09-26 16:33
                      回复
                          3.核分裂式推进系统之二,核分裂电推进引擎
                          这种系统简单的来说,就是用核电厂发电,以电力来加速发射带电粒子来获得推力。当然这个核电厂的体积和重量必须缩小到能够装进太空船中才行。而小型核电厂已经算是相当成熟的技术了,例如目前最小的核子潜舰排水量才两千吨左右,因此基本上此类系统问题并不大。而发射的带电粒子则可从电子到各式离子与电浆等范围,视需求而有不同。基本上为求得较高的推力与较快的加速度,工作流质以质量较重的金属离子或电浆为主。若是要求效率的话则就以发射较轻的粒子如氢离子来得到较高的喷射速度。
                          要注意的问题是需保持太空船的电中性,若是一直制造并发射正离子的话,太空船就会累积负电荷,因此得在离子喷射口中一并喷射电子。若是用电浆推进系统的话则无此问题,电浆本身就是电中性的气体。这类电推进系统的比冲非常大,通常约在1000秒~10000秒之间,这是以光电池等一般动力输出得到的比冲值。但其潜力不止于此,若是能以核分裂动力提供源源不绝的能源来加速很轻带电粒子,则具有把比冲提高到100000秒的潜力。以具有100000秒比冲的引擎来计算,标准太空船约可达到 93404m/sec的ΔV。
                          这类系统的缺点是推力非常低,其为了效率必须使粒子加到极高的速度喷射,但粒子的质量非常小,单位时间内能喷射的粒子质量有限因此获得的推力很低。故采用此种系统的太空船加速度会非常低,一般大约在 10的负5次方个 G左右。因此必须持续数周到数月的加速才能达到设计上的最高速度,同时也不可能推动太空船从星球表面起飞。


                        来自Android客户端17楼2014-09-26 16:34
                        回复
                            4.核融合式推进系统之一,受控核融合推进系统
                            这是把前面的核分裂热推力引擎的能量来源改成核融合,基本原理是一样的。基本上较受到注意的反应方程序有以下这几个:
                            D + D -> T + p + 3.25 MeV
                            D + D -> He3 + n + 4.0 MeV
                            D + T -> He4 + n + 17.6 MeV
                            D + He3 -> He4 + p + 18.3 MeV
                            四个方程序中最有效率的是第四个氘与氦三融合的反应,且此一反应不产生中子,几乎毫无污染,安全性非常高。但地球上不产氦三,只在核子炉中有少量生产,因此价格较高。月球表面氦三倒是很多,但必须建立开采能量。而第一个两个氘之间的融合则原料比较便宜,氘可以从海水中提炼出来,不过这个反应效率较低。第二第三个反应则会产生中子,会有较大的中子射线屏蔽的的问题。
                            使用受控核融合引擎,则随著不同的需求会有不同的比冲值,理论比冲值潜力在1万秒到200万秒之间。比冲值的差异在于混入气体的调整。简单的来说,如果在融合炉开个出口,让氘与氦三反应产生的电浆慢慢泄漏出来,用融合反应产生的能量将这些电浆喷射出去,(也有直接用反应炉开洞喷射的方法),就可以得到秒速两万公里的极高的喷气速度,因此而能有约 200万秒的比冲值。但是基于与电推动系统相同的道理,电浆的单位流量质量非常小,所以虽然喷气速度高,推力却不高。但如果在从融合炉排出来的微量电浆里加入氢混和之后再一并排出去,则由于混入氢之后喷射气体的质量提高了,使喷气速度Vc下降,比冲值也跟著下降,但推力却可以大幅增加。将氦三-氘反应电浆与氢以 1:99的比例混和,即喷射排气中含有99%的氢的时候,喷气速度会降成秒速一百公里,比冲值约为 10000左右。
                            故此种受控核融合推进系统可以用调整氢气导入量来改变推力,在一些需要大推力如超越重力梯度的星球起飞或是紧急加速时非常方便。但这就会造成短时间内效率的下降,会稍微降低太空船的最终速度。附带一提的是,第四个公式的氘和氦三反应产生的是氦四,氦四是一种惰性气体,不含辐射线,所以第四个公式反应之引擎加上氢气喷射的标准太空船可以直接从地面起飞,不会有辐射污染的问题。唯一的问题是这种引擎的出力太大,起降场地面积要很大,且清场得清的干净一点,任何太靠近的人都会倒足大霉。以两百万秒的比冲值,秒速两万公里的喷气速度来算


                          来自Android客户端18楼2014-09-26 16:35
                          回复
                            ,则约可使标准太空船达到 1906km/sec的ΔV值。核融合基于其理论能量转换效率,其理想喷气值约为26800km/s。


                            来自Android客户端19楼2014-09-26 16:35
                            回复
                                5.核融合式推进系统之二,核融合脉冲推进系统
                                虽然受控核融合技术尚未完成,但目前也有可以立刻使用的核融合推进方法,就是引爆氢弹来推动太空船。这种方法被称为核融合脉冲推进或是爆震推进。基本上的设计是这个样子的,以数吨到数百吨* 威力等级的小威力氢弹做为燃料,作成微型氢弹燃料球,每个燃料球直径大约只有一两公分。然后在内藏或外部的燃烧室中央以高能聚焦电子束或是雷射束来点燃这些微氢弹来诱发爆缩式的核融合反应。这些氢弹爆炸后将会产生高温高压电浆,然后与混和的氢从燃烧室喷射出去获得推力。
                                这种系统构造惊人的简单,燃烧室强度不需要很大,因为每个氢弹球的威力是可以事先调整的,只有数吨* 甚至是只有公斤级* 等级威力的微氢弹也是可以作得出来的。以目前的技术,完全可以做出可以承受此种等级爆炸威力的燃烧室,当然燃烧室外层还是要装上超导线圈,弄出磁场来减少电浆对燃烧室壁的侵蚀,同时巧妙灌入的氢气也可以有效保护燃烧室壁。
                                即使是小威力的微氢弹,如果以每秒数十枚到数百枚的流量射入燃烧室内引爆便可获得相当高的总推力,且此推力可由调整氢弹流量而调整。这可以用简单的机车二行程引擎来想象,在二行程引擎中也是用混和油气的爆炸来提供动力,同时用调整油气流量来得到不同的加速度。驾驶员只要转动油门便可以加速。
                                这种系统除了氢弹燃料球流量外,与受控核融合引擎相同的也可以经由导入燃烧室混和的氢气数量来改变推力。这类推进系统已经经由成功的试飞实验证实,不过用的燃料不是氢弹而是zha药。刚开始实验时那些科学家曾不小心把测试火箭炸成碎片,不过后来经过一些调整,成功的把小火箭发射到数十公里的高空。由于是用连续的爆炸脉冲推动火箭,所以称这类推进系统为脉冲式推进或爆震式推进。
                                这类系统的比冲潜力约在一万秒到一百万秒之间。还有系统构造极为简单,造价非常低的优点。缺点是比起受控融合炉的液态燃料储存方式,固态的燃料球在贮存与运输上都会比较不方便,占的空间会相当大。使用这种推进系统的标准太空船之ΔV是受控融合系统的一半,约953km/s左右
                                另外必须一提的是,脉冲推进法也可以用在化学燃料与核分裂燃料上。对于化学燃料使用这种方法的效果尚在研究,但是就核分裂燃料而言,使用此法有一些先天缺陷存在。就核融合而言,当量是没有限制的。大到太阳等级的核融合反应,小到只有几毫克电浆的融合反应都没问题。所以可以把单次爆炸威


                              来自Android客户端20楼2014-09-26 16:36
                              回复