Hill等人发现的内部干涉法可以视为光纤光栅最初的制造方法,因为限制过多,得出的FBG性能太低,目前已不再使用,而光纤表面损伤刻蚀法,成栅条件苛刻,成品率低,使用受到限制,也不是主流生产方式。目前
目前主要的成栅有下面几种:
1)短周期光纤光栅的制作
a)内部写入法 内部写入法又称驻波法。将波长488nm的基模氛离子激光从一个端面耦合到锗掺杂光纤中,经过光纤另一端面反射镜的反射,使光纤中的入射和反射激光相干涉形成驻波。由于纤芯材料具有光敏性,其折射率发生相应的周期变化,于是形成了与干涉周期一样的立体折射率光栅,它起到了Bragg反射器的作用。已测得其反射率可达90%以上,反射带宽小于200MHZ。此方法是早期使用的,由于实验要求在特制锗掺杂光纤中进行,要求锗含量很高,芯径很小,并且上述方法只能够制作布拉格波长与写入波长相同的光纤光栅,因此,这种光栅几乎无法获得任何有价值的应用,很少被采用。用准分子激光干涉的方法,Meltz等人首次制作了横向侧面曝光的光纤光栅。用两束相干紫外光束在接错光纤的侧面相干,形成干涉图,利用光纤材料的光敏性形成光纤光栅。栅距周期由 ∧=λuv/(2sinθ)给出。可见,通过改变人射光波长或两相干光束之间的夹角,可以改变光栅常数,获得适宜的光纤光栅。但是要得到高反射率的光栅,则对所用光源及周围环境有较高的要求。这种光栅制造方法采用多脉冲曝光技术,光栅性质可以精确控制,但是容易受机械震动或温度漂移的影响,并且不易制作具有复杂截面的光纤光栅,这种方法使用不多。
b)光纤光栅的单脉冲写入
由于准分子激光具有很高的单脉冲能量,聚焦后每次脉冲可达J·cm-2,又发展了用单个激光脉冲在光纤上形成高反射率光栅。英国南安普敦大学的 Archambanlt等人对此方法进行了研究,他们认为这一过程与二阶和双光子吸收有关。由于光栅成栅时间短,因此环境因素对成栅的影响降到了最低限度。此外,此法可以在光纤制作过程中实现,接着进行涂覆,从而避免了光纤受到额外的损伤,保证了光栅的良好强度和完整性。这种成栅方法对光源的要求不高,但由于这种方式想要制作高反光纤光栅需要重掺锗,对很多应用的光纤光栅都无法或很难写制,所以特别适用于传感光纤光栅(反射率要求低)的低成本、大批量生产。
c)相位掩模法
将用全息干涉法(或电子束法)制作好的玻璃相位掩模板置于光纤前,然后以指定工作波长的激光(一般为准分子激光或飞秒激光)通过相位掩模板,依靠相位掩膜板具有的压制零级,增强一级衍射的功能。使得激光经过相位掩模板后后衍射到光纤上形成干涉条纹,写入周期为掩膜板周期一半的光纤光栅。这种成栅方法不依赖于入射光波长,只与相位光栅(相位掩模板)的周期有关,因此,对光源的相干性要求不高,简化了光纤光栅的制造系统。这种方法的缺点是相位掩模板的制作工艺复杂,且价格高昂,并且无法制作紫外波段的光纤光栅。 用低相干光源和相位掩膜板来制作光纤光栅的这种方法非常重要,并且相位掩膜与扫描曝光技术相结合还可以实现光栅耦合截面的控制,来制作特殊结构的光栅。该方法大大简化了光纤光栅的制作过程,是2015年后国际上主流的用于制作光纤光栅的方法,也是截止至目前唯一商用化的大批量光纤光栅制备方法。
d)飞秒逐点写入法 使用飞秒激光器作为光源,然后利用精密机械控制激光器运动位移,逐点写入光栅,通过控制激光器的移动速度可写入任意周期的光栅。这种方法在原理上具有最大的灵活性,对光栅可以任意进行设计制作。原则上,利用此方法可以制作出任意长度的光栅,也可以制作出极短的高反射率光纤光栅,但是写入光束必须聚焦到很密集的一点,由于现有技术条件限制,此方法只能刻写长度较短的光纤光栅,且很难刻写高反。所以此方法目前主要用于刻写一些需要在高温、高辐射等特殊条件下使用的传感光栅。
2)长周期光纤光栅的制作
a)金属掩膜法 金属掩膜法是制做长周期光纤光栅最常用的一种方法。实验中采用的光纤为光敏光纤,PC为偏振控制器,AM为金属振幅掩膜,使用CO2激光器照射数min后,可制成周期 60μm~1mm范围内变化的光栅,这种方法对激光器与掩模板的要求极低。
b)逐点写入法 此方法是利用精密机械控制光纤运动位移,每隔一个周期曝光一次,通过控制光纤移动速度可写入任意周期的光栅。这种方法在原理上具有最大的灵活性,对光栅的耦合截面可以任意进行设计制作。原则上,利用此方法可以制作出任意长度的光栅,也可以制作出极短的高反射率光纤光栅,但是写人光束必须聚焦到很密集的一点,因此这一技术主要适用于长周期光栅的写入。它的缺点是需要复杂的聚焦光学系统和精确的位移移动技术。由于各种精密移动平台的研制,这种长周期光纤光栅写入方法正在越来越多的被采用。
目前主要的成栅有下面几种:
1)短周期光纤光栅的制作
a)内部写入法 内部写入法又称驻波法。将波长488nm的基模氛离子激光从一个端面耦合到锗掺杂光纤中,经过光纤另一端面反射镜的反射,使光纤中的入射和反射激光相干涉形成驻波。由于纤芯材料具有光敏性,其折射率发生相应的周期变化,于是形成了与干涉周期一样的立体折射率光栅,它起到了Bragg反射器的作用。已测得其反射率可达90%以上,反射带宽小于200MHZ。此方法是早期使用的,由于实验要求在特制锗掺杂光纤中进行,要求锗含量很高,芯径很小,并且上述方法只能够制作布拉格波长与写入波长相同的光纤光栅,因此,这种光栅几乎无法获得任何有价值的应用,很少被采用。用准分子激光干涉的方法,Meltz等人首次制作了横向侧面曝光的光纤光栅。用两束相干紫外光束在接错光纤的侧面相干,形成干涉图,利用光纤材料的光敏性形成光纤光栅。栅距周期由 ∧=λuv/(2sinθ)给出。可见,通过改变人射光波长或两相干光束之间的夹角,可以改变光栅常数,获得适宜的光纤光栅。但是要得到高反射率的光栅,则对所用光源及周围环境有较高的要求。这种光栅制造方法采用多脉冲曝光技术,光栅性质可以精确控制,但是容易受机械震动或温度漂移的影响,并且不易制作具有复杂截面的光纤光栅,这种方法使用不多。
b)光纤光栅的单脉冲写入
由于准分子激光具有很高的单脉冲能量,聚焦后每次脉冲可达J·cm-2,又发展了用单个激光脉冲在光纤上形成高反射率光栅。英国南安普敦大学的 Archambanlt等人对此方法进行了研究,他们认为这一过程与二阶和双光子吸收有关。由于光栅成栅时间短,因此环境因素对成栅的影响降到了最低限度。此外,此法可以在光纤制作过程中实现,接着进行涂覆,从而避免了光纤受到额外的损伤,保证了光栅的良好强度和完整性。这种成栅方法对光源的要求不高,但由于这种方式想要制作高反光纤光栅需要重掺锗,对很多应用的光纤光栅都无法或很难写制,所以特别适用于传感光纤光栅(反射率要求低)的低成本、大批量生产。
c)相位掩模法
将用全息干涉法(或电子束法)制作好的玻璃相位掩模板置于光纤前,然后以指定工作波长的激光(一般为准分子激光或飞秒激光)通过相位掩模板,依靠相位掩膜板具有的压制零级,增强一级衍射的功能。使得激光经过相位掩模板后后衍射到光纤上形成干涉条纹,写入周期为掩膜板周期一半的光纤光栅。这种成栅方法不依赖于入射光波长,只与相位光栅(相位掩模板)的周期有关,因此,对光源的相干性要求不高,简化了光纤光栅的制造系统。这种方法的缺点是相位掩模板的制作工艺复杂,且价格高昂,并且无法制作紫外波段的光纤光栅。 用低相干光源和相位掩膜板来制作光纤光栅的这种方法非常重要,并且相位掩膜与扫描曝光技术相结合还可以实现光栅耦合截面的控制,来制作特殊结构的光栅。该方法大大简化了光纤光栅的制作过程,是2015年后国际上主流的用于制作光纤光栅的方法,也是截止至目前唯一商用化的大批量光纤光栅制备方法。
d)飞秒逐点写入法 使用飞秒激光器作为光源,然后利用精密机械控制激光器运动位移,逐点写入光栅,通过控制激光器的移动速度可写入任意周期的光栅。这种方法在原理上具有最大的灵活性,对光栅可以任意进行设计制作。原则上,利用此方法可以制作出任意长度的光栅,也可以制作出极短的高反射率光纤光栅,但是写入光束必须聚焦到很密集的一点,由于现有技术条件限制,此方法只能刻写长度较短的光纤光栅,且很难刻写高反。所以此方法目前主要用于刻写一些需要在高温、高辐射等特殊条件下使用的传感光栅。
2)长周期光纤光栅的制作
a)金属掩膜法 金属掩膜法是制做长周期光纤光栅最常用的一种方法。实验中采用的光纤为光敏光纤,PC为偏振控制器,AM为金属振幅掩膜,使用CO2激光器照射数min后,可制成周期 60μm~1mm范围内变化的光栅,这种方法对激光器与掩模板的要求极低。
b)逐点写入法 此方法是利用精密机械控制光纤运动位移,每隔一个周期曝光一次,通过控制光纤移动速度可写入任意周期的光栅。这种方法在原理上具有最大的灵活性,对光栅的耦合截面可以任意进行设计制作。原则上,利用此方法可以制作出任意长度的光栅,也可以制作出极短的高反射率光纤光栅,但是写人光束必须聚焦到很密集的一点,因此这一技术主要适用于长周期光栅的写入。它的缺点是需要复杂的聚焦光学系统和精确的位移移动技术。由于各种精密移动平台的研制,这种长周期光纤光栅写入方法正在越来越多的被采用。